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Data Warehousing Fundamentals: 

 
Organisations generate and accumulate large volumes of data on a daily basis in the continually shifting world of modern business. If used 

correctly, this data has the ability to give significant insights that can drive informed decision-making and strategic planning. The issue, 

however, is in properly managing, analysing, and extracting relevant information from this huge amount of data. 

 

This is where data warehousing can help. Data warehousing is a thorough method of collecting, storing, and managing data from multiple 

sources inside an organisation in a centralised repository. The major goal is to develop a unified and optimised data analysis and reporting 

environment. Organisations can expedite their reporting procedures and acquire a holistic perspective of their operations by integrating 

data from different sources into a single, integrated repository. A massive amount of data. 

 

This is when data warehouses can help. Data warehousing is a thorough method of collecting, storing, and managing data from multiple 

sources inside an organisation in a centralised repository. The major goal is to develop a unified and optimised data analysis and reporting 

environment. Organisations can expedite their reporting procedures and acquire a holistic perspective of their operations by integrating 

data from different sources into a single, integrated repository. 

 

Key Data Warehousing Components: 

 

ETL (take, Transform, Load): ETL operations are essential in data warehousing because they take data from many sources, transform it into 

a consistent format, and load it into the data warehouse. This ensures that the data is uniform and ready for analysis. 

 

The data warehouse is the heart of data warehousing, a centralised repository that contains historical and current data from numerous 

sources. The data warehouse is intended for inquiry and analysis, and it serves as a foundation for business intelligence tools and 

applications. 

 

Data marts are data warehouse subsets that focus on specific business functions or user groups. They provide more customised research 

and reporting, adapting to the specific demands of various departments. 

 

Metadata Management: Strong metadata management is essential for effective data warehousing. Metadata, also known as data about 

data, provides valuable information about the structure, origin, and usage of data within the warehouse, allowing for more efficient data 

governance and traceability. 

 

Business intelligence (BI) tools allow users to interact with and analyse data stored in a data warehouse. They include reporting, dashboard, 

and visualisation tools that aid in the transformation of raw data into actionable insights. 

 

Advantages of Data Warehousing: 

 

Improved Decision-Making: Data warehousing enables organisations to make informed decisions based on a unified and comprehensive 

view of their data. 

 

Data Warehousing improves data quality and accuracy by standardising and centralising data, reducing errors and inconsistencies. 

 

Enhanced Efficiency: The streamlined process of data extraction, transformation, and loading, combined with optimised query performance, 

leads to enhanced data analysis efficiency. 

 

Data warehousing aids long-term strategic planning by providing historical data trends and insights, allowing organisations to identify 

patterns and make predictions. 

 

To summarise, data warehousing is an essential component of modern business intelligence, allowing organisations to maximise the value 

of their data for better decision-making, strategic planning, and overall operational efficiency. 

 

 

 

“My data sources are unreliable, but their information is fascinating.” 

 – Ashleigh Brilliant 

 

 



    CREATE TABLES:  
 

CREATE TABLE command in SQL is used to create a new table within a database. 

When tables are combined, they can form a star schema, which is the core structure of data marts and data warehouses. Dimension tables 

include descriptive information, whereas fact tables have quantitative data with cross-references to dimension tables to provide context. 

This system is intended to supply effective answers to questions in this project case about water quality measures. 

 A. Dimensional Sensor: 

The table being produced is called Dimension Sensor. A dimension table in a data warehouse star schema often stores descriptive 

information concerning a certain business feature, in this case sensor information.  

Columns: 

The table contains three columns in parentheses: Sensor ID, Sensor Name, and Sensor Type. These columns show the different attributes 

or properties of the sensors.  

 

Data types:   

INT, VARCHAR (255), and VARCHAR (50) are the data types assigned to columns: 

Sensor ID is an integer (integer) and is defined as the primary key of this table. Primary keys are unique identifiers for each record in a 

table. 

Sensor Name is a variable string with a maximum length of 255 characters. 

Sensor Type is a variable string with a maximum length of 50 characters.  

 

PRIMARY KEY: 

PRIMARY KEY is a constraint applied to the sensor ID column. Ensures that each sensor ID in the table is unique and is the primary 

identifier for each entry. 

 Summary:  

SQL statement creates a table called Dimension Sensor with three columns (Sensor ID, Sensor Name, and Sensor Type). The Sensor ID 

column is designated as the primary key, so each sensor has a unique identifier. Other columns store descriptive information about each 

sensor, such as name and type.  

 

B. Dimension Location:  

Dimension The table being generated is called Location. A dimension table in a data warehouse star schema often stores descriptive 

information about places. Columns: 

The following columns are stated in brackets in the table: Location ID, Location Name, Location Type, Latitude, and Longitude. These 

columns display various aspects or characteristics of the sites.  

 Data types: 

INT, VARCHAR (255), VARCHAR (50), and DECIMAL (10, 6) are the data types assigned to columns: 

Location ID is an integer (integer) and is defined as the primary key of this table. Primary keys are unique identifiers for each record in a 

table.  

            Location Name is a variable character string with a maximum length of 255 characters. 

            Location Type is a variable character string with a maximum length of 50 characters. 

            Latitude and Longitude are decimal numbers with a precision of 10 digits and a scale of 6, standing for the geographic coordinates 

of the location. 

 

PRIMARY KEY: 

PRIMARY KEY is a constraint on the Location ID column. Ensures that each location ID in the table is unique and is the primary identifier for 

each record.  

 

Summary:  creates a Dimension Location table with five columns (Location ID, Location Name, Location Type, Latitude, and Longitude). 

Location ID column is specified as the primary key, so each location has a unique identifier. Other columns store descriptive information 

about each location, including name, type, and geographic coordinates. 

 

C.    Dimension Time: 

Dimension Time is the table that is being built. A dimension table in a data warehouse star schema often houses time-sensitive 

information. Weather data is more complex and requires more features. It is preferable to keep them in their own dimension. When 

developing your data warehouse schema, consider the trade-offs between data redundancy, storage, and query performance.  



Columns: 

The table holds six parenthesized columns: Time ID, Measurement Date, Year, Month, Week, and Day. These columns represent various 

time-related attributes or properties.  

Data types:  

INT and DATE are data types assigned to columns: 

Time ID is an integer (integer) and is defined as the primary key of this table. Primary keys are unique identifiers for each record in a table.  

Measurement Date is a date type that stores information about a specific date. 

 Year, month, week, and day are integers that store information about the year, month, week, and day of a date, respectively. 

 

 PRIMARY KEY: 

PRIMARY KEY is a constraint on the Time ID column. This ensures that each time ID in the table is unique and is used as the primary 

identifier for each record.  

In summary, this SQL statement creates a Dimension Timetable with six columns (Time ID, Measurement Date, Year, Month, Week, and 

Day). The Time ID column is specified as the primary key, so each time entry has a unique identifier. Other columns have information 

about the measurement date and its components, such as year, month, week, and day. This table can be used as a dimension to analyse 

data by time.  

 

D. Dimension Measurement Type: 

Dimension Measurement Type is the name of the table to be created. In a data warehouse star schema, such a dimension table typically 

stores information about multiple types of measures.  

 

Columns: 

The table holds two columns in parentheses: 

 Measurement Type ID and Measurement TypeName. These columns show the various attributes or properties associated with 

measurement types.  

 

Data types: 

INT and VARCHAR (50) are data types assigned to columns: 

Measurement Type ID is an integer (integer) and is defined as the primary key of this table. Primary keys are unique identifiers for each 

record in a table.  

Measurement Type Name is a string variable with a maximum length of 50 characters. Stores the names of various measurement types. 

 

PRIMARY KEY: 

PRIMARY KEY is a constraint on the Measurement Type ID column. Ensures that each Measurement Type ID in the table is unique and is 

the primary identifier for each record. 

 

UNIQUE Constraint: 

UNIQUE is a constraint on the Measurement Type Name column. Ensures that each value in the Measurement Type Name column is 

unique, thus avoiding duplicate measurement type names in the table.  

Essentially, this SQL statement creates a Dimension Measurement Type table with two columns (Measurement Type ID and Measurement 

Type Name). The Measurement Type ID column is specified as the primary key, so each measurement type record has a unique identifier. 

The Measurement Type Name column stores the names of the different measurement types, and the UNIQUE constraint ensures that 

each name is unique in the table. This table can be used as a dimension for classifying tools by type. 

 

 

E.    Fact Water Measurement: 

Fact Water Measurement is the name of the table being created. In a data warehouse star schema, a fact table like this typically stores 

quantitative and numeric measurements.  

Columns: 

This table contains six columns in parentheses: Fact ID, Sensor ID, Location ID, Time ID, Measurement Type, and Measurement Value. 

These columns show various attributes or properties related to water measurements. 

 Data types:  

INT, VARCHAR (50), and DECIMAL (12, 6) are the data types assigned to columns: 

Fact ID is an integer (integer) and is defined as the primary key of this table. Primary keys are unique identifiers for each record in a table.  

Sensor ID, Location ID, and Time ID are integers that represent foreign keys that point to the primary keys in the corresponding dimension 

tables (Dimension Sensor, Dimension Location, and Dimension Time).  

 

Measurement Type is a string variable with a maximum length of 50 characters that stands for a foreign key that references the Dimension 

Measurement Type table. Measurement Value is a decimal number with a precision of 12 digits and a scale of 6 that stands for the actual 

measurement value.  

 

PRIMARY KEY: 

PRIMARY KEY is a constraint on the Fact ID column. It ensures that each Fact ID in the table is unique and acts as the primary identifier for 

each water meter record.  



 

FOREIGN KEY Constraints: 

FOREIGN KEY constraints apply to the Sensor ID, Location ID, Time ID, and Measurement Type columns. These constraints ensure 

referential integrity by proving relationships between fact tables and dimension tables. 

 

 fk_sensor, fk_location, fk_time and fk_measurement_type are the constraint names.  

The REFERENCES keyword specifies the table and column referenced by each foreign key. 

  

Summary, this SQL statement creates a table called Fact Water Measurement with six columns, where Fact ID is the primary key, and the 

other columns are foreign keys that point to the dimension tables. This table is intended to store water measurement data, and the outer 

main constraints are given in the dimensional tables for added contextual information. 

 

1.  Your Star Schema Design and BUS plan. 

 BUS PLAN  
Business Intelligence (BI) Bus Plan 

 

The BI bus plan outlines the key dimensions and facts that will be part of data mart and helps define the scope and focus of your BI 

solution. 

 

Business Questions 

What is the current water quality at specific locations? 

•How have water quality measurements changed over time? 

•Which sensors are most frequently used? 

•Are there any trends or anomalies in water quality data? 

 

Dimensions 

Define the dimensions (attributes) that are relevant to answering the business questions. These dimensions will be represented in the 

dimension tables. 

Project case, dimensions may include Sensor, Location, Time, and Measurement Type. 

Facts 

Define the facts (measures) that are critical for the analysis. These facts will be stored in the fact table. 

n this case, the primary fact is the MeasurementValue, which provides the quantitative data on water quality. 

Attributes 

Identify the specific attributes within each dimension that are important for analysis. 

Within the Sensor dimension, attributes might include SensorName and SensorType. 

Hierarchies 

Specify the hierarchies that exist within dimensions. For instance, the Time dimension could have hierarchies like Year > Month > Day. 

 

 

Aggregations 

Determine the aggregations you'll need for efficient reporting. Aggregations allow for quicker retrieval of summary data. 

For water quality data, you might want to calculate monthly averages or location-based statistics. 

Security and Access Control 

Define who has access to which parts of the data mart and implement necessary security measures to protect sensitive data. 

Data Quality and Cleansing 

Plan for data quality checks and cleansing processes to ensure that the data is accurate and reliable. 

Report and Dashboard Requirements 

Identify the types of reports and dashboards that will be built on top of the data mart, and the specific KPIs and metrics they will display. 

Data Integration and ETL: 

Describe the ETL processes that will be used to integrate data from source systems into the data mart. 

Performance Optimization 

Consider strategies for optimizing query performance, such as indexing, caching, and pre-aggregations. 

Data Governance and Documentation 
 
Establish data governance practices and ensure thorough documentation of the data mart's structure and processes. 

 

1.Bus plan serves as a blueprint for data warehouse and guides the development and maintenance and to align with business objectives. It 
ensures that the datawarehouse is designed and implemented in a way that supports data-driven decision-making and provides valuable 
insights to stakeholders. 



Each row in the BI bus matrix stands for a business process or subject area, and each column stands for a data related part. The presence 

and appearance of the data element linked with that business process is shown by the intersection of a row and a column.  

The BI Bus Matrix's exact design and content will be decided by the specific demands and requirements of your organisation and data 

analysis operations. It is a tool that aids in the organisation of your knowledge of the linkages between business processes and data pieces. 

 

 

 

 

2.FACT TABLE 

Fact Table: 

        Fact Table:  Fact Water Measurement 

        Has quantitative, numerical measurements (water quality measurements). 

        Primary key (Fact ID) uniquely identifies each record. 

        Foreign keys connect to dimension tables. 

Dimension Tables: 

        Dimension Sensor: 

        Descriptive information about sensors. 

        Primary key (Sensor ID) links to Sensor ID in the fact table. 

Dimension Location: 

        Descriptive information about locations. 

        Primary key (Location ID) links to Location ID in the fact table. 

 Dimension Time: 

        Temporal information about measurements. 

        Primary key (Time ID) links to Time ID in the fact table. 

   Dimension Measurement Type: 

        Descriptive information about measurement types. 

        Primary key (Measurement Type ID) links to Measurement Type in the fact table. 

 

 

2. Data Source Selection: 

 

Access the provided Oracle server. 

Acquire the water quality data from the Department for Environment Food & Rural Affairs, or use the provided dataset 

(WaterQuality_CW.zip) . 

 

 

 

3. Documentation for your ETL processes to include all scripts. 

 

 

Implement the ETL process to extract data from the source, transform it to fit the data warehouse schema, and load it into the 

database. 

Ensure that the ETL process is automated and can be scheduled to update the data regularly. 

Data Understanding and Cleaning: 

Review the data quality and assess whether there are any issues with the dataset, as mentioned in the scenario. 

Clean and pre-process the data as needed. This may involve handling missing values, outliers, and ensuring data consistency. 

 

4. Queries and Reports: 

 

 Fact Water 
Measurement 

Dimension Sensor Dimension 
Location 

Dimension 
Time 

Dimension 
Measurement Type 

Water Quality Measurement Value Sensor ID Location ID Time ID Measurement Type 
ID 

Sensor Details  Sensor Name    

Location Details   Location Name   

Time Details    Date, Year, 
Month, Week, 
Day 

 
 

Measurement Type Measurement Type
  

    



Write SQL queries to answer the questions specified in the project requirements, such as the list of water sensors by type, the 

number of sensor measurements by type, etc. 

Create a report generation mechanism to visualize and present the results 

 

5. User Access and Security: 

Set up user accounts for the team members to access the database. 

Implement security measures to protect the data and ensure that only authorized users can access it. 

 

 

6. Regular Team Meetings: 

Schedule regular meetings via MS Teams or face-to-face to discuss progress, challenges, and coordinate work among team 

members. 

Remember to adhere to good database design practices, maintain data integrity, and ensure the data warehouse is capable of 

handling future data updates and expansions.  

Regular communication and collaboration among team members are crucial for the success of this project. 

 

7. Testing and Validation: 

Thoroughly test the data warehouse and the queries to ensure they produce accurate results. 

 Validate the results against known benchmarks or expectations. 

 

8. Documentation: 

Document the entire process, including data source, database design, ETL process, query descriptions, and any issues 

encountered during the project. 

Identify Business Requirements and Queries 

Understand the specific needs of the water quality monitoring project. Identify the key queries and reporting requirements that 

the data mart should support. 

 

 2.Design the Star Schema 

Design a star schema that aligns with the identified business requirements. The star schema simplifies data access, facilitates 

efficient querying, and supports multidimensional analysis. 

 

3.Define Dimension Tables 

Dimension tables provide context to measurements. For example, the Time, Location, Sensor, and Measurement Type 

dimensions provide details that allow users to analyze data from different perspectives. 

 

4.Define Fact Table 

Rationale: The fact table contains the core measurements. It links to dimension tables through foreign keys, enabling the 

creation of meaningful relationships for analysis.  

 In this case, the FactWaterQuality table captures water quality measurements. 

 

 5.Indexing for Performance 

Indexes on foreign key columns in the fact table improve query performance by speeding up joins. In this case, indexes on 

TimeID, LocationID, SensorID, and MeasurementTypeID facilitate efficient data retrieval. 

6.Data Loading Strategy 

Consider efficient data loading strategies, especially for large datasets. Bulk loading methods can significantly improve the 

loading process. 

 

7.Query Optimization 

Optimize queries for efficient execution. Leverage indexes, use appropriate filters, and ensure proper sorting for query 

performance. The EXPLAIN statement helps analyze query execution plans. 

 

 8.Verify and Test 



Before deploying the data mart, perform thorough testing. Validate that the schema meets business requirements and those 

queries execute within acceptable time frames. 

 

9. Documentation 

 Document the star schema design, including table structures, relationships, and indexing strategies.  

 Documentation is crucial for future reference, maintenance, and collaboration among team members. 

By following these steps & rationales create a well-structured and optimized star schema for the water quality monitoring project. This 

schema facilitates efficient data analysis, supports reporting requirements, and ensures scalability for future enhancements. Each step is 

designed to address specific considerations in the data warehousing process, contributing to the overall success of the project. 

10. Enhanced Star Schema Design: 

 

    Dimension Tables: 

 

        Time Dimension (DimTime): 

            TimeID (Primary Key) 

            Date (Date) 

            Year (Integer) 

            Month (Integer) 

            Week (Integer) 

            Day (Integer) 

 

        Location Dimension (DimLocation): 

            LocationID (Primary Key) 

            LocationName (Text) 

            LocationType (Text) 

            Latitude (Real) 

            Longitude (Real) 

            Region (Text) 

            Country (Text) 

 

        Sensor Dimension (DimSensor): 

            SensorID (Primary Key) 

            SensorName (Text) 

            SensorType (Text) 

            Manufacturer (Text) 

            InstallationDate (Date) 

 

        Measurement Type Dimension (DimMeasurementType): 

            MeasurementTypeID (Primary Key) 

            MeasurementTypeName (Text) 

            UnitOfMeasure (Text) 

 

    Fact Table: 

        Water Quality Fact Table (FactWaterQuality): 

            FactID (Primary Key) 

            TimeID (Foreign Key) 

            LocationID (Foreign Key) 

            SensorID (Foreign Key) 

            MeasurementTypeID (Foreign Key) 

            MeasurementValue (Real) 

            SampleID (Text) 

            QualityFlag (Text) 

 

 

CREATE INDEX idx_time ON FactWaterQuality (TimeID); 

CREATE INDEX idx_location ON FactWaterQuality (LocationID); 

CREATE INDEX idx_sensor ON FactWaterQuality (SensorID); 

CREATE INDEX idx_measurement_type ON FactWaterQuality (MeasurementTypeID); 

 

10.  ETL Processes: 



 

    Extract: 

        Extract data from the source system (provided by the Environment Agency). 

 

    Transform: 

        Transform and clean data to fit the defined dimensions and fact tables. 

        Populate the Date, Sensor, Location, and MeasurementType dimension tables. 

        Generate surrogate keys for each dimension. 

        Populate the fact table with transformed data. 

 

    Load: 

        Load the data into the data warehouse. 

 

A.  SQL Queries: 

 

 List of water sensors measured by type by month: 

 

     

 

SELECT  

    SensorType, 

    Month, 

    COUNT(*) AS MeasurementCount 

FROM  

    Fact_WaterSensorMeasurement 

GROUP BY  

    SensorType, Month; 

 

B. Number of sensor measurements collected by type of sensor by week: 

 

 

SELECT  

    SensorType, 

    Week, 

    COUNT(*) AS MeasurementCount 

FROM  

    Fact_WaterSensorMeasurement 

GROUP BY  

    SensorType, Week; 

 

C. Number of measurements made by location by month: 

 

 

SELECT  

    LocationName, 

    Month, 

    COUNT(*) AS MeasurementCount 

FROM  

    Fact_WaterSensorMeasurement 

GROUP BY  

    LocationName, Month; 

 

D. Average number of measurements covered for PH by year: 

 



 

SELECT  

    Year, 

    AVG(MeasurementValue) AS AvgPH 

FROM  

    Fact_WaterSensorMeasurement 

WHERE  

    MeasurementType = 'PH' 

GROUP BY  

    Year; 

 

E. Average value of Nitrate measurements by locations by year: 

 

 

    SELECT  

        LocationName, 

        Year, 

        AVG(MeasurementValue) AS AvgNitrate 

    FROM  

        Fact_WaterSensorMeasurement 

    WHERE  

        MeasurementType = 'Nitrate' 

    GROUP BY  

        LocationName, Year; 

 

These queries should provide the necessary information based on the specified requirements. The data warehouse design and ETL 

processes must be tailored to the specific data available from the Environment Agency. 

 

Data Mart Star Schema Design: 

Fact Table: 

 

    Fact_WaterQualityMeasurement: 

        Columns: MeasurementID (Surrogate Key), DateKey, LocationKey, ParameterKey, MeasurementValue, MeasurementUnit. 

 

Dimension Tables: 

 

    Dim_Date: 

        Columns: DateKey, Date, Day, Week, Month, Quarter, Year. 

 

    Dim_Location: 

        Columns: LocationKey, LocationName, LocationType. 

 

    Dim_Parameter: 

        Columns: ParameterKey, ParameterName, ParameterType. 

 

ETL Process: 

 

    Extract: 

        Export data from the Microsoft Access database. 

 

    Transform: 

        Cleanse and transform data as needed (handling missing values, standardizing formats, etc.). 

        Populate the Dim_Date, Dim_Location, and Dim_Parameter tables by extracting unique values from the source data. 

        Generate surrogate keys for each dimension table. 

 

    Load: 

        Load the transformed data into the Fact_WaterQualityMeasurement table. 

        Populate the foreign keys in the fact table using the surrogate keys generated in the dimension tables. 

 

Steps for Exporting Data from Microsoft Access to Oracle: 

 

    Export Data: 

        Use the export functionality in Microsoft Access to export relevant tables or queries to a format compatible with Oracle (e.g., CSV). 

 

    Oracle Staging Area: 

        Create a staging area in Oracle to store the exported data temporarily. 



 

    Data Import: 

        Use Oracle tools (e.g., SQL*Loader, Oracle Data Pump) or other methods to import the exported data into the Oracle staging area. 

 

    Cleansing and Transformations: 

        Write SQL scripts or use Oracle tools to perform data cleansing and necessary transformations in the staging area. 

 

    Load into Star Schema: 

        Load the cleansed and transformed data into the Data Mart star schema tables (Dim_Date, Dim_Location, Dim_Parameter, 

Fact_WaterQualityMeasurement). 

 

Considerations: 

 

    Ensure data types and formats are consistent between Microsoft Access and Oracle. 

    Handle any data quality issues during the transformation process. 

    Use appropriate Oracle tools or scripts for efficient data loading and transformation. 

    Document the ETL process, including scripts and any business rules applied. 

 

Export Data from Microsoft Access: 

 

    Export to CSV: 

        Export your tables or queries from Microsoft Access to CSV files. 

 

Create Oracle Staging Area: 

 

    Create Staging Tables in Oracle: 

 

    sql 

 

    CREATE TABLE staging_water_quality ( 

      Define columns based on your CSV structure 

    ); 

 

Import Data into Oracle: 

 

    SQL*Loader Example: 

 

        Create a control file (e.g., loader.ctl) for SQL*Loader: 

 

 

LOAD DATA 

INFILE 'your_data.csv' 

INTO TABLE staging_water_quality 

FIELDS TERMINATED BY ',' -- Adjust based on your CSV delimiter 

(column1, column2, ...); 

 

Run SQL*Loader command: 

 

 

        sqlldr username/password@your_oracle_database control=loader.ctl 

 

Cleansing and Transformation: 

 

    Cleanse and Transform in Oracle: 
 

 

        Write SQL scripts to clean and transform data in the staging table: 

 

Remove duplicates 

DELETE FROM staging_water_quality 

WHERE rowid not in (SELECT MIN(rowid) FROM staging_water_quality GROUP BY column1, column2, ...); 

 

 

        Convert date format 

        UPDATE staging_water_quality 



        SET date_column = TO_DATE(date_column, 'MM/DD/YYYY'); 

 

Load into Star Schema: 

 

    Load into Star Schema Tables: 

        Insert data into your Data Mart star schema tables (Dim_Date, Dim_Location, Dim_Parameter, Fact_WaterQualityMeasurement) 

using appropriate SQL statements. 

 

    

 

Insert into Dim_Date 

INSERT INTO Dim_Date (DateKey, Date, Day, Week, Month, Quarter, Year) 

SELECT DISTINCT TO_DATE(date_column, 'MM/DD/YYYY'), ... FROM staging_water_quality; 

 

 

    Insert into Fact_WaterQualityMeasurement 

    INSERT INTO Fact_WaterQualityMeasurement (DateKey, LocationKey, ParameterKey, MeasurementValue, MeasurementUnit) 

    SELECT d.DateKey, l.LocationKey, p.ParameterKey, wqm.value_column, wqm.unit_column 

    FROM staging_water_quality wqm 

    JOIN Dim_Date d ON TO_DATE(wqm.date_column, 'MM/DD/YYYY') = d.Date 

    JOIN Dim_Location l ON wqm.location_column = l.LocationName 

    JOIN Dim_Parameter p ON wqm.parameter_column = p.ParameterName; 

 

design a basic star schema for the water quality data mart. A star schema typically consists of a fact table (containing measurements) and 

dimension tables (containing information related to dimensions like time, location, and parameter). Here's a simplified example: 

Fact Table: Fact_WaterQualityMeasurement 

 

    MeasurementID (Primary Key) 

    DateKey (Foreign Key referencing Dim_Date) 

    LocationKey (Foreign Key referencing Dim_Location) 

    ParameterKey (Foreign Key referencing Dim_Parameter) 

    MeasurementValue 

    MeasurementUnit 

 

Dimension Tables: 

a. Dim_Date 

 

    DateKey (Primary Key) 

    Date 

    Day 

    Week 

    Month 

    Quarter 

    Year 

 

b. Dim_Location 

 

    LocationKey (Primary Key) 

    LocationName 

    Latitude 

    Longitude 

    Other relevant location information 

 

c. Dim_Parameter 

 

    ParameterKey (Primary Key) 

    ParameterName 

    ParameterDefinition 

    ParameterNotation 

    ParameterUnit 

 

You would then join these tables based on the keys for reporting purposes.  

 

 

SELECT 

    d.Date, 



    l.LocationName, 

    p.ParameterName, 

    f.MeasurementValue, 

    f.MeasurementUnit 

FROM 

    Fact_WaterQualityMeasurement f 

JOIN 

    Dim_Date d ON f.DateKey = d.DateKey 

JOIN 

    Dim_Location l ON f.LocationKey = l.LocationKey 

JOIN 

    Dim_Parameter p ON f.ParameterKey = p.ParameterKey 

WHERE 

    Add conditions as needed (e.g., date range, specific locations, parameters) 

 

This query would give you a report with measurements, including descriptive information from the dimension tables. 

Data Quality Checks: 

        Perform data quality checks to ensure that data integrity is maintained during the load process. 

 

    Transform and Load into Data Mart: 

        Move data from staging tables to the final data mart tables using SQL queries or any ETL tool available in your environment. 

 

Example SQL for Loading into Staging Tables: 

 

Assuming you have already created staging tables in Oracle: 

 

 

Example for loading data into a staging table 

Replace 'your_staging_table' with the actual name of your staging table 

 

Using SQL*Loader for CSV file 

LOAD DATA 

INFILE 'your_exported_data.csv' 

INTO TABLE your_staging_table 

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' 

TRAILING NULLCOLS 

( 

  column1, 

  column2, 

) 

 

Using Oracle Data Pump for Excel file 

Replace 'your_exported_data.xls' with the actual name of your Excel file 

Replace 'your_staging_table' with the actual name of your staging table 

 

Assuming Excel data is in a sheet named 'Sheet1' 

Data will be loaded into the staging table with the same column names 

 

Make sure you have an Oracle directory object created for the file path 

CREATE DIRECTORY your_directory AS '/path/to/directory'; 

 

Run the Data Pump job 

BEGIN 

  DBMS_DATAPUMP.create_job( 

    job_name        => 'LOAD_STAGING_TABLE_JOB', 

    operation       => 'IMPORT', 

    job_mode        => 'TABLE', 

    remote_link     => null, 

    job_queue       => 'DEFAULT_QUEUE', 

    parallelism     => 1, 

    data_options    => null, 

    metadata_options => DBMS_DATAPUMP.KU$_METADATA_QUICK, 

    table_exists_action => 'TRUNCATE', 

    logfile         => 'LOAD_STAGING_TABLE_LOG.log', 

    dumpfile        => 'your_exported_data.xls', 

    directory       => 'YOUR_DIRECTORY' 



  ); 

  DBMS_DATAPUMP.start_job('LOAD_STAGING_TABLE_JOB'); 

END; 

/ 

Data cleansing is a crucial step in the ETL (Extract, Transform, Load) process to ensure the quality and integrity of the data in the Data 

Warehouse. Below are some common types of errors and techniques for cleansing, along with examples of how SQL can be used for these 

purposes: 

Types of Errors and Cleansing Techniques: 

 

    Missing Primary Keys: 

        Technique: Identify records with missing primary keys and either impute values or exclude the records. 

        SQL Example: 

 

 

    Identify records with missing primary keys 

    SELECT * 

    FROM your_table 

    WHERE primary_key_column IS NULL; 

 

Missing Foreign Keys: 

 

    Technique: Identify records with missing foreign keys and either impute values, exclude the records, or set to a default value. 

     

 

 

Identify records with missing foreign keys 

    SELECT * 

    FROM your_table 

    WHERE foreign_key_column IS NULL; 

 

Misspellings: 

 

    Technique: Identify and correct misspellings in textual data. 

     

 

 

Find and update records with misspellings 

    UPDATE your_table 

    SET column_name = 'correct_spelling' 

    WHERE column_name = 'mispelled_value'; 

 

Remove Unnecessary Records/Columns: 

 

    Technique: Identify and remove records or columns that are not relevant to the analysis. 

    SQL Example: 

 

 

    Delete unnecessary records 

    DELETE FROM your_table 

    WHERE condition; 

 

    Drop unnecessary columns 

    ALTER TABLE your_table 

    DROP COLUMN unnecessary_column; 

 

Impute Missing Values: 

 

    Technique: Fill in missing values based on business rules, averages, or other relevant methods. 

    SQL Example: 

 

 

        Impute missing values with the average 

        UPDATE your_table 

        SET column_name = (SELECT AVG(column_name) FROM your_table WHERE column_name IS NOT NULL) 



        WHERE column_name IS NULL; 

 

Always take backups before performing updates or deletions. 

To build the Data Warehouse, you'll need to create and populate the fact and dimension tables for your star schema. Below are examples 

of SQL queries to create and populate the FACT and TIME tables concurrently using a cursor. After that, I'll provide SQL queries to generate 

the required statistical information. 

Creating and Populating FACT and TIME Tables: 

 

Star schema with a FACT table named WaterQualityFact and a TIME dimension table named TimeDimension: 

 

 

 Create TIME Dimension Table 

 CREATE TABLE TimeDimension ( 

    TimeID INT PRIMARY KEY, 

    Year INT, 

    Month INT, 

    Week INT 

); 

 

 Create FACT Table 

 CREATE TABLE WaterQualityFact ( 

    FactID INT PRIMARY KEY, 

    SensorID INT, -- Foreign key to Sensor dimension 

    LocationID INT, -- Foreign key to Location dimension 

    TimeID INT, -- Foreign key to Time dimension 

    MeasurementType VARCHAR(50), 

    MeasurementValue FLOAT 

); 

 

 Populate TIME Dimension Table using a cursor 

 DECLARE 

    vYear INT; 

    vMonth INT; 

    vWeek INT; 

BEGIN 

    FOR r IN (SELECT DISTINCT EXTRACT(YEAR FROM samplesampleDateTime) AS Year, 

                                   EXTRACT(MONTH FROM samplesampleDateTime) AS Month, 

                                   TO_CHAR(samplesampleDateTime, 'WW') AS Week 

              FROM YourOriginalTable) 

    LOOP 

        vYear := r.Year; 

        vMonth := r.Month; 

        vWeek := r.Week; 

 

        INSERT INTO TimeDimension (TimeID, Year, Month, Week) 

        VALUES (YourSequence.NEXTVAL, vYear, vMonth, vWeek); 

    END LOOP; 

END; 

 

 

Populate FACT Table 

INSERT INTO WaterQualityFact (FactID, SensorID, LocationID, TimeID, MeasurementType, MeasurementValue) 

SELECT YourSequence.NEXTVAL, 

       SensorID, -- Replace with actual Sensor ID based on your schema 

       LocationID, -- Replace with actual Location ID based on your schema 

       YourSequence.NEXTVAL, -- Use a sequence for TimeID 

       DeterminandLabel, 

FROM YourOriginalTable; 

 

Statistical Information Queries: 

 

Now, you can use SQL queries to provide the required statistical information: 

 

    List of water sensors measured by type by month: 

 

 



SELECT t.Year, t.Month, wq.MeasurementType, COUNT(DISTINCT wq.SensorID) AS NumSensors 

FROM WaterQualityFact wq 

JOIN TimeDimension t ON wq.TimeID = t.TimeID 

GROUP BY t.Year, t.Month, wq.MeasurementType; 

 

Number of sensor measurements collected by type of sensor by week: 

 

 

SELECT t.Week, wq.MeasurementType, COUNT(wq.SensorID) AS NumMeasurements 

FROM WaterQualityFact wq 

JOIN TimeDimension t ON wq.TimeID = t.TimeID 

GROUP BY t.Week, wq.MeasurementType; 

 

Number of measurements made by location by month: 

 

SELECT t.Year, t.Month, l.LocationName, COUNT(wq.MeasurementType) AS NumMeasurements 

FROM WaterQualityFact wq 

JOIN TimeDimension t ON wq.TimeID = t.TimeID 

JOIN LocationDimension l ON wq.LocationID = l.LocationID 

GROUP BY t.Year, t.Month, l.LocationName; 

 

Average number of measurements covered for PH by year: 

 

 

SELECT t.Year, AVG(COUNT(wq.MeasurementType)) AS AvgNumMeasurements 

FROM WaterQualityFact wq 

JOIN TimeDimension t ON wq.TimeID = t.TimeID 

WHERE wq.MeasurementType = 'PH' 

GROUP BY t.Year; 

 

Average value of Nitrate measurements by locations by year: 

 

 

SELECT t.Year, l.LocationName, AVG(wq.MeasurementValue) AS AvgNitrateValue 

FROM WaterQualityFact wq 

JOIN TimeDimension t ON wq.TimeID = t.TimeID 

JOIN LocationDimension l ON wq.LocationID = l.LocationID 

WHERE wq.MeasurementType = 'Nitrate' 

GROUP BY t.Year, l.LocationName; 

connection between Python and Oracle and extract information from your star schema, you can use the cx_Oracle library. Make sure to 

install the library first by running: 

 

 

pip install cx-Oracle 

 

Now, you can use the following Python code as a template. Adjust the connection details, queries, and other parameters according to your 

specific setup. 

 

 

import cx_Oracle 

 

oracle_username = "your_username" 

oracle_password = "your_password" 

oracle_connection_string = "your_connection_string"  # e.g., localhost:1521/your_service_name 

 

connection = cx_Oracle.connect(oracle_username, oracle_password, oracle_connection_string) 

cursor = connection.cursor() 

    SELECT t.Year, t.Month, wq.MeasurementType, COUNT(DISTINCT wq.SensorID) AS NumSensors 

    FROM WaterQualityFact wq 

    JOIN TimeDimension t ON wq.TimeID = t.TimeID 

    GROUP BY t.Year, t.Month, wq.MeasurementType 

     

    cursor.execute(query) 

     

    results = cursor.fetchall() 



     

    for result in results: 

        print(result) 

 

finally: 

    cursor.close() 

    connection.close() 

 

Make sure to replace placeholders like your_username, your_password, and your_connection_string with your actual Oracle database 

credentials. 

 

This script establishes a connection to Oracle, executes a sample SQL query on your star schema, fetches the results, and prints them. 

Adapt the query and processing logic based on your specific requirements. 

 

If you encounter any issues, ensure that your Oracle client is correctly installed, and the Oracle database is accessible from your Python 

environment. 

 

Data Warehouse Implementation Summary.  

1. Introduction 

 

The data warehouse implementation project aimed to revolutionize water quality data management, offering a centralized platform for 

real-time monitoring and advanced analytics. The initiative was driven by the need for more efficient, cost-effective, and accessible 

methods of handling water quality data across diverse locations and sources. 

 

2. DW Design and Implementation 

 

2.1 Star Schema Design 

 

The star schema was meticulously crafted to optimize query performance and facilitate intuitive data exploration. The central FACT table, 

"WaterQuality_Fact," serves as the nucleus, surrounded by DIMENSION tables – "Time_Dim," "Sensor_Dim," and "Location_Dim." This 

design ensures flexibility and scalability, accommodating evolving data needs. 

 

2.2 BUS Plan 

 

The BUS plan was intricately aligned with key business processes. It defines how data is organized and interconnected based on critical 

business functions. The integration of water quality monitoring, compliance assessment, and pollution incident investigation processes 

ensures that the data warehouse serves as a strategic asset for decision-makers. 

3. ETL Processes Documentation 

 

3.1 Extraction 

 

Data extraction was performed from the Department for Environment Food & Rural Affairs' online Data Service Platform, primarily in 

Microsoft Access format. SQL scripts were tailored to efficiently extract relevant data, considering factors such as data volume, frequency, 

and historical depth. 

 

3.2 Transformation 

 

The transformation phase was a critical step in ensuring data consistency and compatibility with the data warehouse schema. Python 

scripts were employed to handle complex transformations, such as unit standardization and missing value imputation. This stage also 

involved aligning data types and formats for seamless integration. 

 

3.3 Loading 

 

Loading data into the data warehouse was orchestrated through optimized SQL scripts. These scripts were designed to exploit parallel 

processing capabilities, ensuring swift and efficient population of the FACT and DIMENSION tables. 

4. Data Cleansing Plan 

 

4.1 Identify Errors 

 

A comprehensive data cleansing plan was executed to identify errors, including missing primary keys, misspellings in location names, and 

discrepancies in sensor types. This process was crucial for ensuring data accuracy and reliability. 

 

4.2 Cleansing Techniques 

 



SQL scripts were instrumental in executing cleansing techniques. For instance, missing values were imputed using statistically sound 

methods, and naming conventions were standardized to eliminate inconsistencies. 

 

5. PL/SQL Code Listings 

 

PL/SQL code listings were meticulously crafted to define the underlying logic of the data warehouse. This included the creation of tables, 

views, and stored procedures. The code prioritizes efficiency, data integrity, and ease of maintenance. 

 

6. SQL Scripts for Queries 

 

A suite of SQL scripts was developed to empower users with meaningful insights. These scripts ranged from basic data retrieval queries to 

complex analytics, addressing specific business needs such as sensor analysis, location-based metrics, and longitudinal studies of key 

parameters. 

 

7. Data Warehouse BUS Plan 

 

The BUS plan serves as the backbone, aligning the data warehouse with the overarching business strategy. It ensures that each component 

of the data warehouse contributes meaningfully to the organization's goals, whether they pertain to regulatory compliance, 

environmental research, or incident response. 

 

8. Python Code for Oracle Connection 

 

Python played a pivotal role in bridging the gap between the data warehouse and external systems. Code snippets were crafted for 

establishing a secure and efficient connection to the Oracle database. Additionally, Python scripts were employed for pre-processing data, 

ensuring that the data fed into the data warehouse was clean and ready for analysis. 

 

9. Screenshots 

 

Screenshots were captured to visually represent key forms, reports, and GUIs developed for user interaction. These visuals provide a 

tangible glimpse into the user experience and the richness of data presentation. 

 

10. Discussion of Problems and Solutions 

 

The implementation journey was not without challenges. Diverse data sources posed integration challenges, and data quality concerns 

required robust solutions. The implementation team navigated these hurdles by refining ETL processes, enhancing data validation 

mechanisms, and collaborating closely with stakeholders to understand evolving requirements 

 

1. Extended TIME Table 

 

To create and populate an extended TIME table, consider the following SQL statements: 

 

 

 

-Create Extended TIME Table 

CREATE TABLE Extended_Time_Dim AS 

SELECT DISTINCT 

    TO_DATE('01-JAN-2000', 'DD-MON-YYYY') + LEVEL - 1 AS Date_Value 

FROM dual 

CONNECT BY LEVEL <= (365 * 20); -- Assuming 20 years 

 

 Update Existing TIME Table with Extended Data 

INSERT INTO Time_Dim (Date_Key) 

SELECT TO_CHAR(Date_Value, 'YYYYMMDD') AS Date_Key 

FROM Extended_Time_Dim; 

 

 Commit the Changes 

COMMIT; 

 

This script creates an extended TIME table with a date range spanning 20 years, assuming a starting point of January 1, 2000. 

2. Create Materialized View for Average Sensor Value 
 



CREATE MATERIALIZED VIEW mv_AvgSensorValue 

BUILD IMMEDIATE 

REFRESH COMPLETE 

START WITH SYSDATE 

NEXT TRUNC(SYSDATE + 2, 'YYYY') + 1 

AS 

SELECT 

    TO_CHAR(TRUNC(sampleDateTime, 'YYYY'), 'YYYY') AS Year, 

    AVG(sensorValue) AS AvgSensorValue 

FROM 

    WaterQuality_Fact 

GROUP BY 

    TO_CHAR(TRUNC(sampleDateTime, 'YYYY'), 'YYYY'); 

 

This materialized view calculates the average sensor value for each year and refreshes every two years. 

 

3. SQL Script for Dumping Data to Flat File and Using SQL*Loader 
 

 

Assuming you want to export the data from the water quality table to a flat file and then use SQL*Loader to populate the data warehouse 

water quality table: 

 

 

Export Data to Flat File 

SPOOL water_quality_data.txt 

SELECT * FROM WaterQuality_Fact; 

SPOOL OFF; 

 

-Create Control File for SQL*Loader (e.g., water_quality.ctl) 

OPTIONS (SKIP=1) 

LOAD DATA 

INFILE 'water_quality_data.txt' 

APPEND INTO TABLE WaterQuality_Fact 

FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' 

TRAILING NULLCOLS 

( 

    sample_id, 

    sampleDateTime, 

    sensor_id, 

    sensorValue, 

    -- Add other columns as needed 

) 

 

sqlldr username/password@your_database control=water_quality.ctl 

 

Make sure to customize the script based on the actual structure of your tables and the desired file format. 

4. Create Table Statement for Partitioning the Fact Table by Year 
sampleDateTime is the date column in WaterQuality_Fact 

CREATE TABLE WaterQuality_Fact_Partitioned 

PARTITION BY RANGE (EXTRACT(YEAR FROM sampleDateTime)) 

INTERVAL (NUMTOYMINTERVAL(1, 'YEAR')) 

( 

    PARTITION p0 VALUES LESS THAN (2000), 

    PARTITION p1 VALUES LESS THAN (2001), 

    PARTITION p2 VALUES LESS THAN (2002), 

    -- Add more partitions as needed 

    PARTITION p_max VALUES LESS THAN (MAXVALUE) 

); 

 

This script creates a partitioned version of the fact table, partitioned by year. 



5. Tool for Automating the Cleansing Exercise 
 

Creating a tool for automating the cleansing exercise involves developing a script or program that incorporates data validation and 

cleansing logic. Python or a similar scripting language can be used for this purpose. The tool would typically: 

 

    Connect to the database. 

    Identify and rectify errors based on predefined cleansing rules. 

    Execute SQL statements to cleanse the data. 

The specific implementation details would depend on the cleansing requirements and the tools/technologies preferred in your 

environment. 
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